Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0545120160260040757
Journal of Microbiology and Biotechnology
2016 Volume.26 No. 4 p.757 ~ p.762
Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community
Yokoyama Hiroshi

Ishida Mitsuyoshi
Yamashita Takahiro
Abstract
The group of Fe(III) oxide-reducing bacteria includes exoelectrogenic bacteria, and they possess similar properties of transferring electrons to extracellular insoluble-electron acceptors. The exoelectrogenic bacteria can use the anode in microbial fuel cells (MFCs) as the terminal electron acceptor in anaerobic acetate oxidation. In the present study, the anodic community was compared with the community using Fe(III) oxide (ferrihydrite) as the electron acceptor coupled with acetate oxidation. To precisely analyze the structures, the community was established by enrichment cultures using the same inoculum used for the MFCs. High-throughput sequencing of the 16S rRNA gene revealed considerable differences between the structure of the anodic communities and that of the Fe(III) oxide-reducing community. Geobacter species were predominantly detected (>46%) in the anodic communities. In contrast, Pseudomonas (70%) and Desulfosporosinus (16%) were predominant in the Fe(III) oxide-reducing community. These results demonstrated that Geobacter species are the most specialized among Fe(III)-reducing bacteria for electron transfer to the anode in MFCs. In addition, the present study indicates the presence of a novel lineage of bacteria in the genus Pseudomonas that highly prefers ferrihydrite as the terminal electron acceptor in acetate oxidation.
KEYWORD
acetate oxidation, community structure, dissimilatory Fe(III) reduction, microbial fuel cell, sulfate reduction
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)